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Abstract. We introduce the variational calculus on q-nonuniform lat-
tices. In particular, we discuss the basic concepts such as the Euler-Lagrange
equation and its applications to the isoperimetric, the Lagrange and the op-
timal control problems on q-nonuniform lattices.

1 Introduction.

Following [10, 11], let x(s) be a real valued discrete variable (s ∈ 1
2Z) func-

tion such that

F (x(s), x(s− 1
2)) = F (x(s), x(s + 1

2 )) = 0, (1)

where

F (x, y) = ax2 + 2bxy + cy2 + 2dx+ 2cy + 2f = 0. (2)

This means that

x(s+ 1
2) = P (x) +

√

Q(x); x(s− 1
2 ) = P (x) −

√

Q(x), (3)

where P (x) and Q(x) are polynomials of degree maximum 1 and 2 respec-
tively.
Next, from (3), one derives the following most important canonical forms
for x(s) in order of increasing complexity:

x(s) = x(0); (4)

x(s) = s; (5)

x(s) = qs; (6)

x(s) =
qs + q−s

2
, q ∈ C. (7)
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Here for concreteness, we take 0 < |q| < 1. The forms (4)-(7) correspond to

Q(x) = 0, P (x) = x; Q(x) = 1
4 , P (x) = x; Q(x) = (q−1)2

4 q x2,

P (x) = (q+1)
2
√
q x; Q(x) = (q−1)2

4 q (x2 − 1), P (x) = (q+1)
2
√
q x (8)

respectively. As seen from (1), the set of points {(x(s), x(s+ 1
2)), (x(s), x(s−

1
2 )), s ∈ 1

2Z} forms a lattice on the corresponding conic. For this reason,
one refers to the functions (4)-(7) as ”continuous” (constant), ”uniform”
(linear), ”q-uniform” and ”q-nonuniform” lattices, respectively.
Next, define the following divided difference derivative [10, 11]:

Df(x(s)) =
f(x(s+ 1

2
))−f(x(s− 1

2
))

x(s+ 1
2
)−x(s− 1

2
)

. (9)

The point here is that if f(x) is a polynomial of degree n in x(s), then
Df(x(s)) is a polynomial in x(s) of degree n− 1. As far as we are aware of,
(9) is the most general (divided difference) derivative having this propriety.
Note that when x(s) is given by (4)-(6), the corresponding divided difference
derivatives give respectively:

Df(x) = d
dxf(x) (10)

∆ 1
2
f(x) = ∆f(t) = f(t+ 1) − f(t) = (e

d
dt − 1)f(t); t = x− 1

2 (11)

D
q

1
2
f(x) = Dqf(t) = f(qt)−f(t)

qt−t = q
d
dt −1
qt−t f(t); t = q−

1
2x. (12)

(13)

When x(s) is given by (7), the corresponding derivative is usually referred
to as the Askey-Wilson first order divided difference operator [1] that one
can write:

Df(x(z)) = f(x(q
1
2 z))−f(x(q−

1
2 z))

x(q
1
2 z)−x(q−

1
2 z)

, (14)

where x(z) = z+z−1

2 , having in mind that z = qs.
To deal with the inverse of the differentiation operation that is the integra-
tion, we have to solve for f from the equation

Df(x(s)) =
f(x(s+ 1

2
))−f(x(s− 1

2
))

x(s+ 1
2
)−x(s− 1

2
)

= g(x(s)). (15)

One gets

f(x(s− 1
2)) − f(x(N + 1

2))

=
∑t=N
t=s [x(t− 1

2) − x(t+ 1
2)]g(x(t)); N ≥ s. (16)

2



Hence the definition of the integral on lattices:

∫ x(s)

x(N+ 1
2
)
g(x(t))dqx(t)

def
=

∑N
t=s+ 1

2
[x(t− 1

2 ) − x(t+ 1
2 )]g(x(t)) (17)

=
∑x(N)

x(t)=x(s+ 1
2
)
[x(t− 1

2) − x(t+ 1
2)]g(x(t)). (18)

Varying t in the opposite sense, one gets from (15)

f(x(s+ 1
2)) − f(x(N − 1

2))

=
∑t=N
t=s [x(t+ 1

2) − x(t− 1
2)]g(x(t)); N ≤ s, (19)

and the integral

∫ x(s)

x(N− 1
2
)
g(x(t))dqx(t)

def
=

∑N
t=s− 1

2
[x(t+ 1

2 ) − x(t− 1
2 )]g(x(t)) (20)

=
∑x(N)

x(t)=x(s− 1
2
)
[x(t+ 1

2) − x(t− 1
2)]g(x(t)). (21)

(22)

Remark that when x(s) = (qs+q−s)/2, we have x(−s) = x(s) and the equa-
tion (19) is obtained from (16) by replacing quite simply s, t and N by −s,
−t and −N , respectively. It is also understood that in the formulae (16)-
(18) and (19)-(21), one can take N → +∞ and N → −∞, respectively. Let
finally note that the differentiation or integration on any one of the lattices
in (5)-(7) generalizes the differentiation or integration on the lattices of less
complexity. Hence the calculus on a given lattice generalizes the calculus on
a lattice of less complexity.
This work is concerned in the generalization of the variational calculus. The
variational calculus on the uniform lattices was proposed in [3]. In the time
to follow, most of researches in the area were mainly directed to the study
of the complete integrability of the discrete Euler-Lagrange equation (see
for ex. [6, 7, 8, 9, 12, 16]). That is to say that as far as we are aware of,
the question of the generalization of the continuous (differential) variational
calculus, to the calculus of variation on lattices more general than the uni-
form one (treated in [3]), had never been considered until [2]. in [2], the
variational calculus on the q-uniform lattices was discussed . Here, we con-
sider the variational calculus on the q-nonuniform lattices. More precisely,
we discuss q-nonuniform lattices versions of the basic concepts of variational
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calculus such as the Euler-Lagrange equation, the isoperimetric, Lagrange
and optimal control problems. Also, some interconnections between the
Euler-Lagrange equation, the Hamilton and the Hamilton-Pontriaguine sys-
tems on q-nonuniform lattices are discussed. In the following section, we
first outline some basic formulae for differentiation and integration on q-
nonuniform lattices, useful for the sequel.
Before closing this section, let us note that others motivation and derivation
of the lattices (4)-(7) can be found in [13]. On the other side, a widely differ-
ent generalization of the derivative in (12) (the so-called Jackson derivative)
can be found in [5] and references therein. Also, it is to be understood
that others kinds of nonuniform lattices had already been used in various
discretization problems (see for ex. [15]).

2 Differentiation and integration on q-nonuniform

lattices

Here for clarity, we outline basic formulae of the differentiation and integra-
tion on q-nonuniform lattices. This means that setting z = qs in (7), the

current variable is now x(z) = z+z−1

2 .

Derivative of a product

D(fg)(x(z)) = f(x(q
1
2 z))Dg(x(z)) + g(x(q−

1
2 z))Df(x(z))

= g(x(q
1
2 z))Df(x(z)) + f(x(q−

1
2 z))Dg(x(z)) (23)

Derivative of a ratio

D(f/g)(x(z)) = g(x(q−
1
2 z))Df(x(z))−f(x(q−

1
2 z))Dg(x(z))

g(x(q
1
2 z))g(x(q−

1
2 z))

(24)

Derivative of a composite function

D(f(g))(x(z)) = f(g(x(q
1
2 z)))−f(g(x(q−

1
2 z)))

g(x(q
1
2 z))−g(x(q−

1
2 z))

.g(x(q
1
2 z))−g(x(q−

1
2 z))

x(q
1
2 z)−x(q−

1
2 z)

def
= (Dgf).Dxg (25)

Derivative of the inverse function

Let y = f(x).Then x = f−1(y) where f−1 is the inverse to f function.
Applying the divided difference derivative on both sides of the preceding
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equation, one obtains

1 = f−1(y(x(q
1
2 z)))−f−1(y(x(q−

1
2 z)))

x(q
1
2 z)−x(q−

1
2 z)

= f−1(y(x(q−
1
2 z)))−f−1(y(x(q−

1
2 z)))

y(x(q
1
2 z))−y(x(q−

1
2 z))

.y(x(q
1
2 z))−y(x(q−

1
2 z))

x(q−
1
2 z)−x(q−

1
2 z)

def
= Dyf

−1.Dxy

Hence

Dyf
−1 = 1

Dxy
. (26)

”Fundamental principles” of analysis

(i)

D

[

∫ x(z)

x(qN q
1
2 )
g(x(z))dqx(z)

]

= D

[

∑x(qN )

x(zq
1
2 )

[x(zq−
1
2 ) − x(zq

1
2 )]g(x(z))

]

=

[

∑x(qN )

x(z)
−

∑x(qN )

x(qz)

]

[x(zq−
1
2 )−x(zq

1
2 )]g(x(z))

x(zq−
1
2 )−x(zq

1
2 )

(27)

= g(x(z)). (28)

(ii)

∫ x(z)

x(qN q
1
2 )

(Df)(x(z))dqx(z) =
∑x(qN )

x(zq
1
2 )

[x(zq−
1
2 ) − x(zq

1
2 )](Df)(x(z))

=
∑x(qN )

x(zq
1
2 )

[f(x(zq−
1
2 )) − f(x(zq

1
2 ))]

= f(x(z)) − f(x(qNq
1
2 )). (29)

Integration by parts

The equation (23) can be written as

f(x(q
1
2 z))Dg(x(z)) = D(fg)(x(z)) − g(x(q−

1
2 z))Df(x(z)). (30)

Multiplying the both sides of the equation by

γ(z) = x(q−
1
2 z) − x(q

1
2 z) (31)
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and integrating on the x(z) lattice from x(qNq
1
2 ) to x(z), one obtains

∫ x(z)

x(qNq
1
2 )
f(x(q

1
2 z))Dg(x(z))dqx(z)

= [fg]
x(z)

x(qN q
1
2 )

−
∫ x(z)

x(qN q
1
2 )
g(x(q−

1
2 z))Df(x(z))dqx(z). (32)

Convergence of integrals

Using the relation,

dq(x(z))
def
= x(q−

1
2 z) − x(q

1
2 z) = 1

2
√
q (1 − z−2)(1 − q)z

= 1
2
√
q (1 − z−2)dq(z); dq(z)

def
= (1 − q)z, (33)

one makes the change of integration variables from the q-nonuniform to the
uniform one

∫ x(z)

x(qNq
1
2 )
f(x(z))dq(x(z)) = 1

2
√
q

∫ z

qN+1
2
(1 − z−2)f(x(z))dq(z) (34)

Hence, the existence of the integral in the lhs of (34) is conditioned by the
existence of the one in the rhs. In particular, when N → +∞, we have

∫ x(z)
x(0) f(x(z))dq(x(z)) = 1

2
√
q

∫ z
0 (1 − z−2)f(x(z))dq(z)

= 1
2(1 − q)z

∑+∞
0 qig(qi+

1
2 z), (35)

where g(z) = (1− z−2)f(x(z)). But what stands in the rhs of (35) is clearly

a Riemann integral sum of the function 1
2g(q

1
2 z) on [0, z]. That is why the

integrability of the function f(x(z)) on [x(0), x(z)] can be deduced from that

of g(q
1
2 z) on [0, z]. Moreover, in the case of Riemann integrability of g(q

1
2 z)

on [0, z], we have the limit

∫ x(z)
x(0) f(x(z))dq(x(z)) →

1
2

∫ z
0 (1 − z−2)f(x(z))d(z), q → 1. (36)

Example 1. (Derivative of a polynomial). Let Pn(x(z)) be a polynomial

in the variable x(z) = z+z−1

2 . We calculate its derivative to make sure that
it is a polynomial in x(z) with moreover a degree equal to n− 1. Using the

fact that any polynomial of degree k in x(z) = z+z−1

2 can be written as

Pk(x(z)) =
∑k
i=0 ai(

z+z−1

2 )i =
∑k
j=0 bj(z

j + z−j), (37)
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we obtain

DPn(x(z)) =

∑n

j=0
bj(q

j
2 zj+q−

j
2 z−j)−

∑n

j=0
bj(q

−

j
2 zj+q

j
2 z−j)

q
−

1
2 −q

1
2

2
(z−z−1)

=
∑n
j=1 2bj

q
j
2 −q−

j
2

q−
1
2 −q

1
2

zj−z−j

z−z−1 =
∑n
j=1 2bj

q
j
2 −q−

j
2

q−
1
2 −q

1
2

∑j−1
k=0 ck(z

k + z−k)

=
∑n
j=1 2bj

q
j
2 −q−

j
2

q−
1
2 −q

1
2
P̃j−1(

z+z−1

2 ) = ˜̃P n−1(
z+z−1

2 ). (38)

Example 2. (Integral of a polynomial). We now calculate the integral of

a polynomial Pn(x(z)) of degree n in the variable x(z) = z+z−1

2 and make
sure that it is a polynomial in x(z) with moreover a degree equal to n+ 1.
The relation (37) will also be used. So, for a given polynomial Pn(x(z)), we
search a function f(x(z)) such that

Df(x(z)) = f(x(zq
1
2 ))−f(x(zq−

1
2 ))

x(zq
1
2 )−x(zq−

1
2 )

= Pn(x(z)). (39)

Hence

f(x(zq−
1
2 )) − f(x(zq

1
2 )) = (x(zq−

1
2 ) − x(zq

1
2 ))Pn(x(z))

= q−
1
2 −q

1
2

2 (z − z−1)Pn(
z+z−1

2 ) =
∑n+1
j=1 aj(z

j − z−j)

= P 1
n+1(z) + P 2

n+2(z) (40)

where

P 1
n+1(z) =

∑n+1
j=1 ajz

j ; P 2
n+1(z) = −

∑n+1
j=1 ajz

−j . (41)

Now, let us consider two functions f1(x(z)) and f2(x(z)) such that f(x(z)) =
f1(x(z)) + f2(x(z)) and

f1(x(q
− 1

2 z)) − f1(x(q
1
2 z)) = P 1

n+1(z) (42)

f2(x(q
− 1

2 z)) − f2(x(q
1
2 z)) = P 2

n+1(z). (43)

From (42) and (43) follows respectively that

f1(x(z)) =
∑∞
i=0 P

1
n+1(q

i+ 1
2 z) + c1 =

∑n+1
i=1

ajq
j
2

1−qj z
j + c1 (44)

f2(x(z)) = −
∑∞
i=0 P

2
n+1(q

−i− 1
2 z) + c2 =

∑n+1
i=1

ajq
j
2

1−qj z
−j + c2. (45)

Hence

f(x(z)) = f1(x(z)) + f2(x(z)) = c+
∑n+1
i=1

ajq
j
2

1−qj [zj + z−j]

= P̃n+1(
z+z−1

2 ). (46)

7



3 Euler-Lagrange equation on q-nonuniform lat-

tices

We consider the following functional given as an integral on the q-nonuniform
lattice x(z) = z+z−1

2 :

J(y(x(z))) =
∫ b
a F [x(z), y(x(q−

1
2 z)),Dy(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F [x(z), y(x(q−
1
2 z)),Dy(x(z))] (47)

where γ(z) is given in (31) and a = x(qβ+ 1
2 ), b = x(qα−

1
2 ) with the supposi-

tion that β ≥ α. In (47), F is a differentiable function with respect to all its
arguments. The function y belongs to the variety E ′ of functions satisfying
boundary constraints

y(qα−
1
2 ) = y(qβ+ 1

2 ) = c, (48)

in the linear space E of functions f(x(z)) defined and bounded together
with Df(x(z)), on the set

L = {qα−
1
2
+ i

2 , i = 0, 1, . . . , 2(1 + β − α)} (49)

and equipped with the norm

‖f‖ = max(sup
z∈L

|f(x(z))|, sup
z∈L

|Df(x(z))|). (50)

The extremum problem consists then in finding the extremals for the func-
tional (47) under the constraints (48). As F is a differentiable function
with respect to all its arguments, we can calculate the first variation of the
functional:

δJ(y(x(z)), h(x(z))) = d
dtJ(y(x) + th(x))|t=0 = d

dtu(t)|t=0,

u(t)

=
∫ b
a F [x(z), y(x(q−

1
2 z)) + th(x(q−

1
2 z)),Dy(x(z)) + tDh(x(z))]dqx(z).

Hence

δJ(y(x(z)), h(x(z))) =
∑qβ

z=qα γ(z){Fv0 [x(z), y(x(q
− 1

2 z)),Dy(x(z))]h(x(q−
1
2 z))

+Fv1 [x(z), y(x(q
− 1

2 z)),Dy(x(z))]Dh(x(z))} (51)
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where Fvi
= ∂F

∂vi
means the derivative of F with respect to its (i + 2)th

argument, i = 0, 1. As y + th belongs also to E ′, it follows from (48) that

h(qα−
1
2 ) = h(qβ+ 1

2 ) = 0. (52)

Using (32) and (52), one transforms (51) in

δJ(y(x(z)), h(x(z))) =
∑qβ

z=qα γ(z){Fv0 [x(z), y(x(q
− 1

2 z)),Dy(x(z))]

−D[Fv1 [x(zq
− 1

2 ), y(x(q−1z)),Dy(x(q−
1
2 z))]]}h(x(q−

1
2 z)). (53)

To obtain the Euler-Lagrange equation form (53), we need the following
q-nonuniform lattices version of the ”fundamental lemma of variational cal-
culus”

Lemma 3.1 Suppose that for a given function f(z), one has

∑qβ

qα γ(z)f(z)p(z) = 0 (54)

for any function p(z) belonging to the space E, then f(z) ≡ 0.

Proof. For various functions pi(z), the equation (54) gives a system of
equations that one can write in matrix (may be infinite dimensional) form
as Ay = 0 where Aij = γ(qα+j)pi(q

α+j) and yj = f(qα+j), i, j = 0, . . . , β−α.
To obtain f(z) ≡ 0, it suffices to choose the pi(q

α+j) so that the matrix A
be invertible, which proves the lemma.

Applying the lemma to the equation (53), one obtains

Fv0 [x(z), y(x(q
− 1

2 z)),Dy(x(z))]

−D[Fv1 [x(zq
− 1

2 ), y(x(q−1z)),Dy(x(q−
1
2 z))]] = 0, (55)

which is the Euler-Lagrange equation giving the necessary condition for the
extremum problem on q-nonuniform lattices. It is a second order q-difference
equation, which in principle is solved uniquely under the boundary con-
straints (48).
Remark 1. If the function under the sign of integration F is given by
F = F (x, y1, . . . , yn,Dy1, . . . ,Dyn), so the extremum necessary condition is
given by n equations similar to (55), one equation for each variable, the
other variables being supposed fixed.
Remark 2. If the function under the sign of integration F is given by F =
F (x, y,Dy, . . . ,Dny), so the change of variables y1 = y, y2 = Dy, . . . , yn =
Dn−1y leads to the case of remark 1, with additional constraints: Dy1 =
y2,Dy2 = y3 . . . ,Dyn−1 = yn. This gives a particular case of the ”Lagrange
problem” which will be discussed in the next section.
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4 Applications

4.1 The isoperimetric problem on q-nonuniform lattices

The problem. Consider the integration functional on q-nonuniform lattices

J0(y(x(z))) =
∫ b
a F0[x(z), y(x(q

− 1
2 z)),Dy(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F0[x(z), y(x(q
− 1

2 z)),Dy(x(z))] (56)

defined in E ′. Let next be given a set of other functionals

Ji(y(x(z))) =
∫ b
a Fi[x(z), y(x(q

− 1
2 z)),Dy(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)Fi[x(z), y(x(q
− 1

2 z)),Dy(x(z))], (57)

defined also in E ′ and consider the equations

Ji(y(x)) = ci, i = 1, . . . ,m. (58)

The isoperimetric problem consists in finding extremals of the functional
J0(y), among all the functions belonging in E ′ and satisfying (58).
The solution. The settled isoperimetric problem can be solved in a more
general setting by the following theorem (see for ex [4]).

Theorem 4.1 Suppose that is given a set of functionals Ji(y), i = 0, 1, . . . ,m
defined on a variety E ′ of a linear normed space E and admitting on E ′

the first variation δJi(y, h) with δJi(y, h), i = 1, . . . ,m linearly indepen-
dent functionals. Suppose next that y0 is an extremal of J0(y) under the
constraints Ji(y) = ci, i = 1, . . . ,m and δJi(y0, h) 6≡ 0, i = 1, . . . ,m. In
that case, y0 is an ordinary extremal for the functional J ∗(y) = J0(y) +
∑m
i=1 λiJi(y), where the λi are some constants.

Applied to our functionals (56), (57) and constraints (58), the theorem im-
plies that if the functions under the signs of integration F0 and Fi are differ-
entiable with respect to all its arguments (this is sufficient for the functionals
to have the first variation), and the variational derivatives (i.e. the function
in the lhs of the corresponding Euler-Lagrange equation) of the functionals
(57) are linearly independent (this is sufficient for the first variations to be
so), then the extremals of J0(y) under the constraints (58) are included in
the union of the set of solutions of the equations δJi(y, h) = 0, i = 1, . . . ,m,
and that of δJ∗(y, h) = 0, where J∗(y) = J0(y) +

∑m
i=1 λiJi(y).
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Example. Suppose it required to find the extremum of the integration
functional on q-nonuniform lattices

J0(y(x(z))) =
∫ b
a [12 (Dy(x(z)))2 − a(q + q2 + 2q

3
2 )y(x(q−

1
2 z))]dqx(z)

=
∑qβ

z=qα γ(z)[12 (Dy(x(z)))2 − a(q + q2 + 2q
3
2 )y(x(q−

1
2 z))] (59)

under the constraints

J1(y(x(z))) = 4aq
3
2

∫ b
a [x2(q−

3
4 z)y(x(q−

1
2 z))]dqx(z)

= 4aq
3
2

∑qβ

z=qα γ(z)[x2(q−
3
4 z)y(x(q−

1
2 z))] = c1. (60)

According to the theorem 4.1, this is equivalent to the problem of finding
the ordinary extremum for the functional

J∗(y(x(z))) =
∫ b
a F

∗[x(z), y(x(q−
1
2 z)),Dy(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F ∗[x(z), y(x(q−
1
2 z)),Dy(x(z))] (61)

where

F ∗

= 1
2 (Dy(x(z)))2 + [4λaq

3
2x2(q−

3
4 z) − a(q + q2 + 2q

3
2 )]y(x(q−

1
2 z)). (62)

The Euler-Lagrange equation for this problem is

D[Dy(q−
1
2 z)] = 4λaq

3
2x2(q−

3
4 z) − a(q + q2 + 2q

3
2 ). (63)

Its solution reads

y(x(z)) = 4aq4

(q3+q2+q+1)(q2+q+1)
x4((z)) − qa(q5+q4+4q3+4q2+q+1)

(q2+1)(q2+q+1)
x2((z))

+ q(q4+q3+3q2+q+1)
2(q3+q2+q+1)

+ p1(x(z)), λ = 1, (64)

where p1(x(z)) is any first degree polynomial in x(z).

4.2 The Lagrange problem on q-nonuniform lattices

The Problem. Let now be given a q-nonuniform lattices integration func-
tional

J0(ȳ(x)) =
∫ b
a F0[x(z), ȳ(x(q

− 1
2 z)),Dȳ(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F0[x(z), ȳ(x(q
− 1

2 z)),Dȳ(x(z))] (65)
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defined in E ′n. Here ȳ(x) = (y1(x), . . . , yn(x)). Let moreover be given a set
of difference equations on q-nonuniform lattices

φi[x(z), ȳ(x(q
− 1

2 z)),Dȳ(x(z))] = 0, i = 1, . . . ,m < n. (66)

The Lagrange problem consists in finding extremals of the functional (65)
under the constraints (66).
The solution. The Lagrange problem can be reduced to the isoperimetric
one by transforming (66) in type (58) constraints. For that, we multiply the
both sides of (66) by arbitrary functions λi(x), and then take the integral
on the q-nonuniform lattice from a to b. We obtain new constraints

Ji(ȳ(x)) =
∫ b
a λi(x)φi[x(z), ȳ(x(q

− 1
2 z)),Dȳ(x(z))]dqx(z) = 0,

i = 1, . . . m. (67)

Under the conditions of theorem 4.1, the solutions (y1(x), . . . , yn(x)) of the
isoperimetric problem (65), (67) satisfy the Euler-Lagrange equation for the
functional

Ĵ(ȳ) = J0(ȳ) +
∑m
i=1 λ̂i(x)Ji(ȳ), λ̂i(x) = λ̃iλi(x), i = 1, . . . ,m, (68)

for some constants λ̃i. But since clearly from (66) follows (67), the solutions
of the Lagrange problem (65), (66) satisfy as well the Euler-Lagrange equa-
tion for the same functional (68).

Example. Suppose now that it is required to find the extremum of the
functional

J0(x, y, u) = 1
2

∫ b
a [u2(t(z)) − x2(t(q−

1
2 z))]dqx(z)

= 1
2

∑qβ

z=qα γ(z)[u2(t(z)) − x2(t(q−
1
2 z))], (69)

under the constraints

Dx(t(z)) = y(t(q−
1
2 z)); Dy(t(z)) = u(t(z)). (70)

This is a Lagrange type problem hence it is equivalent to the problem of
finding an ordinary extremum for the functional

J∗(x, y, u, λ1, λ2) =
∫ b

a
F ∗[t(z), x(t(q−

1
2 z)), y(t(q−

1
2 z)), u(t(z)),Dx(t(z)),Dy(t(z))]dqx(z)

=
qβ
∑

z=qα

γ(z)F ∗[t(z), x(t(q−
1
2 z)), y(t(q−

1
2 z)), u(t(z)),Dx(t(z)),Dy(t(z))], (71)

12



where

F ∗ = 1
2 (u2(t(z)) − x2(t(q−

1
2 z)))

+λ1(t)(Dx(t(z)) − y(t(q−
1
2 z))) + λ2(t)(Dy(t(z)) − u(t(z))). (72)

The Euler-Lagrange equation for this problem reads

x(t(z))) = D+D−D−D+x(t(z))) (73)

where

D+h(t(z))
def
= h(t(z))−h(t(qz))

t(z)−t(qz)

D−h(t(z))
def
= h(t(z/q))−h(t(z))

t(z/q)−t(z) (74)

Searching the solution under the form

x(t(z)) =
∑∞
j=0(ajz

j + a−jz
−j), (75)

one finds the following recurrence relations for the coefficients

aj =
∫ +
a

∫ −
a

∫ −
a

∫ +
a (aj) (76)

where the applications
∫ ±
a :

∫ ±

a
: (a±(j−1), a±j , a±(j+1)) −→ a±±j (77)

are given by

a±j = γ0q
j
2

1−qj (aj−1q
∓ j−1

2 − aj+1q
∓ j+1

2 ), γ0 = q−
1
2 −q

1
2

2

a±−j = γ0q
j
2

1−qj (a−j+1q
± j−1

2 − a−j−1q
± j+1

2 ), j = 2, . . .

a±1 = γ0(2a0 − a2q
∓); a±−1 = γ0(2a0 − a−2q

±); a±0 = cte. (78)

such that the applications

∫ ± :
∑∞
j=0(ajz

j + a−jz
−j) −→

∑∞
j=0(a

±
j z

j + a±−jz
−j) , (79)

are the inverses of D±. Additional constraints to (75) are obtained by the
fact that the applications

∫ + and
∫ − are defined on series

∑∞
j=0(bjz

j +
b−jz

−j) for which b1 = qb−1 and b−1 = qb1, respectively.
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4.3 The optimal control problem on q-nonuniform lattices

The problem. Consider now the integration functional on q-nonuniform
lattices

J(ȳ(x), ū(x)) =
∫ b
a f

0[x(z), ȳ(x(q−
1
2 z)), ū(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)f0[x(z), ȳ(x(q−
1
2 z)), ū(x(z))] (80)

where ȳ(x) = (y1(x), . . . , yn(x)) and ū(x) = (u1(x), . . . , un(x)). The func-
tional is defined on E ′n union the set of admissible (that is which values
belong to a fixed set U in Rn) functions ū(x), where E ′n is the subset of En

which elements satisfy the boundary constraints

ȳ(qα−
1
2 ) = ȳ(qβ+ 1

2 ) = C... (81)

Consider then the difference equations on q-nonuniform lattices

Dyi(x(z)) = fi[x(z), ȳ(x(q
− 1

2 z)), ū(x(z))], i = 1, . . . , n. (82)

The optimal control problem consists in finding among all admissible vector
functions ū(x), that for which the corresponding solution of (81), (82) is an
extremal of the functional (80). The functions ȳ(x) and ū(x) are said to
constitute an optimal process and are called optimal trajectory and optimal
control respectively.
The solution. To solve the optimal control problem, we consider it as a n+
m dimensional Lagrange problem: Find n+m functions (y1(x), . . . , yn(x))
and (u1(x), . . . , un(x)) that are extremals for (80) under the conditions (81)
and

φi(x, ȳ(x(q
− 1

2 z)), ū(x(z))) = 0 (83)

where

φi(x, ȳ(x(q
− 1

2 z)), ū(x(z)))

= Dyi(x(z)) − fi[x(z), ȳ(x(q
− 1

2 z)), ū(x(z))], i = 1, . . . , n. (84)

According to the discussions done in the preceding subsection, the solutions
of such an extremum problem satisfy necessarily the Euler-Lagrange system
of the functional

J∗(ȳ(x), ū(x)) =
∫ b
a F

∗[x(z), ȳ(x(q−
1
2 z)), ū(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F ∗[x(z), ȳ(x(q−
1
2 z)), ū(x(z))] (85)
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where

F ∗[x(z), ȳ(x(q−
1
2 z)), ū(x(z))] = f 0[x(z), ȳ(x(q−

1
2 z)), ū(x(z))]

+
∑n
i=1 ψi(x)[Dyi(x) − fi[x(z), ȳ(x(q

− 1
2 z)), ū(x(q−

1
2 z))]] (86)

The corresponding Euler-Lagrange system is then

f0
vj

−
∑n
i=1 ψi(x)fivj

−D[ψi(x(q
− 1

2 z))] = 0, j = 1, . . . , n (87)

f0
wj

−
∑n
i=1 ψi(x)fiwj

= 0, j = 1, . . . ,m. (88)

Here f0
i and fi have as arguments x(z), ȳ(x(q−

1
2 z)), ū(x(q−

1
2 z)) and gvj

and
gwj

mean the partial derivatives of g with respect to its (j + 1)th and (n+
j + 1)th arguments respectively. Setting

H = −f0[x(z), ȳ(x(q−
1
2 z)), ū(x(z))]

+
∑n
i=1 ψi(x)[fi[x(z), ȳ(x(q

− 1
2 z)), ū(x(z))]], (89)

so,(82), (87) and (88) give respectively

Dyi(x) = Hψi
(90)

D[ψi(x(q
− 1

2 z))] = −Hyi
, j = 1, . . . , n (91)

and

Hui
= 0, j = 1, . . . ,m. (92)

Thus, the necessary condition for the optimal control problem is given by
(92), provided is solved the system (90)-(91). Due to similarities with the
continuous case [14], one can refer to H and (90)-(91) as q-nonuniform lat-
tices Hamilton-Pontriaguine function and system respectively.

Example. (Linear quadratic problem on q-nonuniform lattices) The prob-
lem now is that of finding a control function u(x) such that the corresponding
solution to the boundary value problem

Dy = −ay(x(zq−
1
2 z)) + u(x(z)), a > 0

y(qα−
1
2 ) = y(qβ+ 1

2 ) (93)

is an extremal for the functional (quadratic cost functional on q-nonuniform
lattices)

J(y, u) = 1
2

∫ b
a [u2(x(z)) + y2(x(q−

1
2 z))]dqx(z)

= 1
2

∑qβ

z=qα γ(z)[u2(x(z)) + y2(x(q−
1
2 z))]. (94)
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The problem is of optimal control type. The Hamilton-Pontriaguine function
and system are respectively

H = −1
2 [y2(x(q−

1
2 z)) + u2(x(z))] + ψ(x(z))[−ay(x(zq−

1
2 z)) + u(x(z))](95)

and

Dy = −ay(x(zq−
1
2 z)) + u(x(z)),

D[ψ(x(q−
1
2 z))] = aψ(x(z)) + y(x(zq−

1
2 ))

ψ = u. (96)

The equation for y(x(z)) then becomes

D[dy(x(q−
1
2 z)) + ay(x(q−1z))] = aDy + (a2 + 1)y(x(q−

1
2 z)). (97)

Searching the solution y(x(z)) under a series of the form (75), so the recur-
rence relations satisfied by the coefficients are given by

y =
∫ − y − a

∫ + y + (a2 + 1)
∫ − ∫ + y (98)

where the applications
∫ ± are defined in (78)-(79).

4.4 Interconnection between the variational calculus, the op-

timal control and the Hamilton system on q-nonuniform

lattices.

Consider now the case of pure variational calculus on q-nonuniform lattices
that is the control function and the control system are not present explicitly:
Find extremals of the functional

J(y(x(z))) =
∫ b
a F [x(z), y(x(q−

1
2 z)),Dy(x(z))]dqx(z)

=
∑qβ

z=qα γ(z)F [x(z), y(x(q−
1
2 z)),Dy(x(z))] (99)

defined in E ′. Note also that the variable x is not present explicitly. Our
objective is to show the following proposition

Prposition 4.1 On q-nonuniform lattices, are equivalent: the Euler-Lagrange
equation, the Hamilton and the Hamilton-Pontriaguine systems.

Proof. We show this in three steps:
a) We first show how to obtain the Hamilton system from the Euler-Lagrange
equation. For the functional in (99), the Euler-Lagrange equation reads

Fv0 [x(z), y(x(q
− 1

2 z)),Dy(x(z))]

−D[Fv1 [x(zq
− 1

2 ), y(x(q−1z)),Dy(x(q−
1
2 z))]] = 0. (100)
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Letting

ψ(x) = Fv1 [x(z), y(x(q
− 1

2 z)),Dy(x(z))], (101)

and

H = −F + ψ(x)Dy, (102)

then we get from (100),(101) and (102) the Hamilton system

Dy(x(z)) = Hψ[y(x(q−
1
2 z)), ψ(x(z)),Dy(x(z))]

D[ψ(x(q−
1
2 z))] = −Hy[y(x(q

− 1
2 z)), ψ(x(z)),Dy(x(z))] (103)

b) To get the Hamilton-Pontriaguine system from the Hamilton system
(103), it suffices to suppose u(x(z)) = Dy(x(z)) to be the control equa-
tion for the given initial non controlled extremum problem. In that case,
(103) gives

Dy(x(z)) = Hψ[y(x(q−
1
2 z)), ψ(x(z)), u(x(z))]

D[ψ(x(q−
1
2 z))] = −Hy[y(x(q

− 1
2 z)), ψ(x(z)), u(x(z))] (104)

with

H = −F [y(x(q−
1
2 z)), u(x)] + ψ(x(z))u(x(z)), (105)

the Hamilton-Pontriaguine function, and from (101) we get the third equa-
tion in (92):

Hu = 0. (106)

c) We finally show how to obtain the Euler-Lagrange equation (100) from
the Hamilton-Pontriaguine system (104), (105) and (106). From (105) and
(106), we have

ψ(x(z)) = Fv1 [y(x(q
− 1

2 z)), u(x(z))] = F1[y(x(q
− 1

2 z)), Dqy(x(z))], (107)

while from (104) we get

D[ψ(x(q−
1
2 z))]

= Fv0 [y(x(q
− 1

2 z)), u(x(z))] = Fv0 [y(x(q
− 1

2 z)), Dqy(x(z))]. (108)

Finally, (107) and (108) give the Euler-Lagrange equation (100), which
proves the proposition.
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